A quasi order characterization of smooth continua
نویسندگان
چکیده
منابع مشابه
A contact mechanics model for quasi-continua
A computational multiscale contact mechanics model is proposed to describe the interaction between deformable solids based on the interaction of individual atoms or molecules belonging to the solids. The contact model, formulated in the framework of large deformation continuum mechanics, is derived from coarsening the molecular dynamics (MD) description of a large assembly of individual atoms, ...
متن کاملA cohesive finite element for quasi-continua
In this paper, a cohesive finite element method (FEM) is proposed for a quasi-continuum (QC), i.e. a continuum model that utilizes the information of underlying atomistic microstructures. Most cohesive laws used in conventional cohesive FEMs are based on either empirical or idealized constitutive models that do not accurately reflect the actual lattice structures. The cohesive quasi-continuum f...
متن کاملSmooth biproximity spaces and P-smooth quasi-proximity spaces
The notion of smooth biproximity space where $delta_1,delta_2$ are gradation proximities defined by Ghanim et al. [10]. In this paper, we show every smooth biproximity space $(X,delta_1,delta_2)$ induces a supra smooth proximity space $delta_{12}$ finer than $delta_1$ and $delta_2$. We study the relationship between $(X,delta_{12})$ and the $FP^*$-separation axioms which had been introduced by...
متن کاملReduced Order Computational Continua
INTRODUCTION The paper presents a new multiscale framework that is both mathematically rigorous and practical in the sense that it has been successfully applied in aerospace, automotive and civil engineering industries. The “rigor” aspect of the method is provided by recently developed computational continua (C) formulation (Fish and Kuznetsov, 2009), which is endowed with fine-scale details, i...
متن کاملQuasi-smooth Derived Manifolds
The category Man of smooth manifolds is not closed under arbitrary fiber products; for example the zeroset of a smooth function on a manifold is not necessarily a manifold, and the non-transverse intersection of submanifolds is not a manifold. We describe a category dMan, called the category of derived manifolds with the following properties: 1. dMan contains Man as a full subcategory; 2. dMan ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1974
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1974.53.495